総 説 (特集)

耐熱性酵素を用いた in vitro バイオリファイナリーへの挑戦

In vitro Bio-refinery with Thermostable Enzymes

本 田 孝 祐¹* Kohsuke Honda¹*

1大阪大学大学院工学研究科生命先端工学専攻 〒 565-0871 大阪府吹田市山田丘 2-1

 * TEL: 06–6879–7438 FAX: 06–6879–7439
* E-mail: honda@bio.eng.osaka-u.ac.jp
¹ Department of Biotechnology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan

キーワード:(超)好熱菌,耐熱性酵素, *in vitro* 代謝工学 **Key words:** (hyper)thermophile, thermostable enzyme, *in vitro* metabolic engineering

(原稿受付 2014年6月24日/原稿受理 2014年7月2日)

1. はじめに

微生物の代謝機能を活用したバイオマスからの化学品 生産,いわゆるバイオリファイナリーは,産業社会の持 続可能性向上に向けた重要な技術課題のひとつとして, 専門家のみならず広く一般にもその名を知られるところ となっている。エネルギー問題への関心の高まりともあ いまり、とりわけバイオ燃料生産には大きな期待と注目 が寄せられている。しかし、化石燃料への依存度の軽減 のみにとどまない将来的な脱石油化社会の実現までを視 野に入れるならば、バイオリファイナリーは燃料性物質 のみならず、幅広い種類の化学品生産への適用を目指し て展開されてゆくべきものであろう。このような考えの もと、筆者らは微生物の代謝経路を構成する酵素をモ ジュールとし、これらを in vitro で自在に組み合わせる ことで、様々な化学品生産に特化した人工代謝経路をオ ンデマンドで構築する新たな生体触媒利用技術の開発に 取り組んできた。

複数の酵素を組み合わせた *in vitro* での人工代謝経路 再構築とこれを用いた化学品生産の実施例は,これまで にも複数の報告がなされている。古くは1985年に Welsh と Scopes により,個別に精製された酵母の解糖 系酵素群によるグルコースからのエタノール生産が報告 されている⁸、本報告によれば,1M(18%)のグルコー スから8時間の反応で2M(9%)のエタノールが得ら れている。また,近年では筆者らのグループをはじめ, 米国,ドイツの研究グループなどが様々な*in vitro* 代謝 経路の構築に取り組んでおり,有機酸¹⁰⁻¹¹,アルコー ル¹⁻²,アミロース¹³,水素⁵⁹の生産,あるいは電極反 応とのカップリングによる発電への応用¹⁴⁾などが報告 されている。しかし,これらの試みにおいて,経路を構 築するモジュールとなる酵素を調製するためには、数千 種にも及ぶ生体内の酵素のうち,目的とする酵素のみを

副反応を伴わないレベルにまで精製する必要がある。本 誌の読者なら容易に想像がつくとおり、タンパク質精製 には多段階にわたる煩雑な操作が必要となり、この煩雑 さが in vitro 代謝工学のひとつの足かせとなっていた。 筆者らのグループでは、この煩雑性を回避するために (超) 好熱菌に由来する耐熱性酵素を人工代謝経路構築 のためのモジュールとして採用した。まず好熱菌に由来 する耐熱性酵素遺伝子を大腸菌などの中温性宿主微生物 内で過剰発現させる。得られた組換え菌を60~80°C程 度の熱処理に供することで, 宿主由来酵素の大部分が熱 変性により失活し、精製酵素と同レベルの高い選択性を 有した生体触媒が容易に得られる。こうして得られた熱 処理菌体を触媒モジュールとしてそのまま利用すること で、タンパク質精製の手間をかけることなく in vitro 代 謝経路の構築が可能となる。本アプローチは、異種宿主 内での機能的発現さえ可能であれば、あらゆる耐熱性酵 素に対して適用可能である。従って,代謝経路を構成す る一連の耐熱性酵素をモジュール化し、これらを任意に 組み合わせることによって化学品生産に特化した in vitro 代謝経路を簡便かつ自在にデザインすることが可 能となる。

筆者らはこれまでの研究で、本法を用い、グルコース を原料とした乳酸¹¹⁾,リンゴ酸¹⁰⁾,1-ブタノール²⁾など の物質の選択的生産に成功している。本稿では、これら の成果について紹介するとともに、本法を通じて実用化 に資する生産効率を達成するために、今後取り組むべき 課題についても議論したい。

ATP 非生産型キメラ解糖経路の構築と 乳酸生産への応用

生きた細胞を用いる発酵生産の場合とは異なり、単離 酵素のみを用いた *in vitro* での物質変換反応の場合, 本 田

図1. 原核 / 真核生物における一般的な EM 経路(左),一部のアーキアが有する変形 EM 経路(中),および筆者らが構築したキメ ラ型 EM 経路(右)¹¹⁾。変形 EM 経路に特徴的に見られる酵素を白抜きで示した。

NAD(P)H や ATP といった補酵素類の外部添加が必要 となる。しかし、これらは一般に高価な物質であり、化 学品生産への応用を考えた場合、目的物質の生産に必要 なモル当量の補酵素を外部添加することは経済的観点か ら見てもナンセンスである。従って, in vitro 人工代謝 経路のデザインにあたっては,経路内での ATP/ADP お よび NAD(P)⁺/NAD(P)H の消費 / 再生量をバランスさ せ、これらを継続的にターンオーバーさせながら利用す る工夫が必要である。例えば、解糖系の場合、1分子の グルコースから2分子のピルビン酸が生産される過程 で、2分子の ATP が生産される。従って、天然型の解 糖系を in vitro で再構築したとしても、これを用いてピ ルビン酸やエタノールを生産する場合、生産物と当モル の ADP を外部添加する必要が生じる。前述の Welsch と Scopes の報文において、彼らは反応液にヒ酸を添加 することでこの問題を見事に解決している。ヒ酸存在下 においてグリセロアルデヒド 3-リン酸 (GAP) デヒド ロゲナーゼ (GAPDH) は、リン酸の代わりにヒ酸を取 り込み、本来の代謝中間体である1,3-ビスホスホグリセ リン酸(1.3-BPG)の一方のリン酸基がヒ酸に置換され た不安定な中間体を生産する。この中間体は自発的なヒ 酸基の脱離により、ただちに 3-ホスホグリセリン酸(3-PG)へと分解されるため、結果的にホスホグリセリン 酸キナーゼ(PGK)による ATP 生成反応がスキップさ れる⁸⁾。

一方,筆者らのグループでは,毒性の高いヒ酸を利用するのではなく,一部のアーキアが有する変形
Embdem-Meyerhof (EM)経路中の酵素を利用したキメラ型解糖経路を構築することで ATP/ADP 収支の問題を

解決することを試みた(図1)。変形 EM 経路では,通 常の EM 経路において GAPDH と PGK によって触媒さ れる GAP から 3-PG への脱水素反応が, GAP フェレド キシン酸化還元酵素 (GAPOR) や non-phosphorylating GAPDH (GAPN) による1段階の反応で進行する。 GAPOR, GAPN による GAP の脱水素化はリン酸非依 存的に進行するため、これらの反応は ATP の生成を伴 わない。一方,変形 EM 経路では,最終反応であるホ スホエノールピルビン酸(PEP)からピルビン酸への変 換が, AMP から ATP への二リン酸化を伴う PEP シン ターゼ (PEPS) によって触媒されることにより、通常 のEM経路と同様、経路全体を通じて2分子のATPが 生産される補酵素収支が達成される。従って、通常型 EM 経路の GAPDH, PGK を変形 EM 経路に由来する GAPOR や GAPN でショートカットすることで ATP/ ADP 収支の合致した、すなわち ATP を生産しないキメ ラ型解糖経路が構築できる。筆者らは、超好熱性アーキ アである Thermococcus kodakarensis 由来の GAPN⁴⁾ な らびに好熱性細菌 Thermus thermophilus 由来の原核生 物型 EM 経路酵素群を組み合わせたキメラ型 EM 経路 を構築し、これを用いたグルコースからの乳酸生産に取 り組んだ¹¹⁾。なお、一連の反応の最終ステップとなるピ ルビン酸から乳酸への NADH 依存的還元反応は通常, 乳酸デヒドロゲナーゼ (LDH) によって触媒されるが, Thermus thermophilus 由来耐熱性 LDH は,比較的低濃 度 (0.5 mM 以上) の NAD⁺ 存在下で強く阻害を受ける ことが明らかとなった。そこで筆者らは、同細菌の遺伝 子発現ライブラリー¹²⁾より LDH と同等の反応を触媒し うる酵素を探索し, malate/lactate dehydrogenase(MLDH)

図 2. キメラ型 EM 経路および MLDH のカップリングによる in vitro でのグルコースからの乳酸生産¹¹⁾。乳酸濃度を丸 印で,反応液中の NAD⁺, NADH の総濃度を四角印で示 した。反応開始後 5 時間の時点で 1 mM の NADH を追加 添加した場合の乳酸, NAD(H) の濃度変化を黒色印,追加 添加を行わなかった場合を灰色印で示す。

とアノテーションされた機能未知酵素が NAD⁺ による 阻害を被ることなくピルビン酸から乳酸への NADH 依 存的還元反応を触媒することを見出した。*In vitro* で再 構築した人工代謝経路では,転写・翻訳レベルでの調節 作用に左右されない物質生産が可能であることは言うま でもないが,このように異なる代謝経路(あるいは異な る微生物)に由来する酵素をアッセンブルすることによ りタンパク質レベルで作用するアロステリック調節をも 回避できる点には着目すべきだろう。

こうして構築された *in vitro* 人工代謝経路を用いたグ ルコースからの乳酸生産を実施した結果,図2に示すと おり,反応開始から5時間程度までの間,継続的な乳酸 の蓄積が認められた。その後,生産速度は大きく低下し たが,これは酵素の失活によるものではなく,補酵素で ある NAD⁺ および NADH の熱分解に起因することが明 らかとなった。反応開始5時間後に1 mM の NADH を 再添加することにより,反応速度は回復し,10時間の 反応で6 mM のグルコースからモル収率 100%の変換, すなわち 12 mM の乳酸を得ることが可能となった。こ の際,経路内での ATP/ADP の回転数は 31 と算出され た。

ATP 非生産型キメラ解糖経路を 用いたリンゴ酸生産

上記のとおり,筆者らは ATP/ADP 収支を合致させる ことを目的にキメラ型解糖経路を構築した。補酵素収支 の合致に加え,本経路が有するもうひとつの注目すべき 側面は,本来 ATP の形で取り出されるべき自由エネル ギー変化がキャンセルされる点にある。従って,本経路 を通じたグルコースからピルビン酸への変換反応には, 通常の解糖系に比べ,より大きな自由エネルギー変化が 伴うと考えられる。この自由エネルギー変化は,本経路 を通じた物質変換反応を推し進める上でのドライビング フォースとして働きうる。この利点を活かし,筆者らは 熱力学的に不利な反応を本キメラ経路にカップリングさせることにより、その反応平衡を逆転させる取り組みを 実施した。ここで筆者らが用いた酵素は、マリックエン ザイムと呼ばれるものであり、リンゴ酸からピルビン酸 への酸化的脱炭酸反応を触媒する。マリックエンザイム が触媒する反応は可逆反応であるが、ピルビン酸からリ ンゴ酸への炭酸付加反応には、下式(3)のとおり正の 自由エネルギー変化が伴うため、その反応平衡は脱炭酸 反応側に傾いている。これに対し、ATP 非生産型キメ ラ解糖経路とのカップリングにより、式(4)に示すよ うに合成経路全体での自由エネルギー変化を大きく負に シフトさせることが可能である。

Bacterial/Eukaryotic EM pathway	
$Glucose + 2ADP + 2Pi + 2NAD(P)^+$	
=2Pyruvate+2ATP+2NAD(P)H+2H ⁺ +2H ₂ O	
ΔG° = -59 kJ/mol	(eq. 1)
Non-ATP-forming chimeric EM pathway	
$Glucose + 2NAD(P)^+$	
=2Pyruvate+2NAD(P)H+2H ⁺ +2H ₂ O	
ΔG° = -136 kJ/mol	(eq. 2)
Malic-enzyme-mediated carboxylation of pyruvate to malate	
$Pyruvate + HCO_3^- + NAD(P)H + 2H^+$	
=Malate+NAD(P)++ H_2O	
$\Delta G^{\circ} = +7.3 \text{ kJ/mol}$	(eq. 3)

Coupling reaction of eq. 2 and 3 $Glucose+2HCO_3^-+2H^+=2Malate$ $\Delta G^{o'}=-121 \text{ kJ/mol}$ (eq. 4)

筆者らは, T. kodakarensis 由来マリックエンザイム (TkME) を用い、この合成経路を構築し、これを用い たグルコースからリンゴ酸への変換反応を実施した¹º)。 なお、この過程で我々は、TkME が炭酸ではなく重炭酸 イオンを基質とすること,重炭酸イオン濃度が低い条件 下では、重炭酸に依存しないピルビン酸の還元(すなわ ち乳酸の生産)が付随することを見出した。これらの知 見をもとに反応液中の重炭酸イオン濃度を保つために pH を最適化するとともに反応容器のヘッドスペースを CO2 ガスに置換した条件下でリンゴ酸生産実験を行っ た。この結果, 1.8 mM のグルコースから 2.6 mM のリ ンゴ酸を生産することが可能であった(図3)。乳酸生 産の場合と比べ、生産物濃度、収率とも低くとどまる結 果となったが,これらは副産物としての乳酸の蓄積(約 0.6 mM) や TkME の酸化還元補酵素となる NADP(H) が,NAD(H)に比べ熱安定性が低い点などが原因と考え られる。

4. In vitro 人工代謝経路を用いた 1-ブタノール生産

ブタノールは、ガソリンに匹敵する単位体積あたりの 発熱量を有することなどから、次世代型バイオ燃料とし て注目を集める物質である。微生物によるブタノール生 産の例としては、偏性嫌気性細菌である Clostridium acetobutyricum によるアセトン / ブタノール発酵がよく 知られている。筆者らも C. acetobutyricum の天然型経 本 田

路をモチーフに,そこに含まれる酵素群の耐熱性ホモロ グを用いた人工経路を構築することで*in vitro* での1-ブ タノール生産を試みた。しかし,後述するように,天然 のブタノール生産経路を構成する酵素の中には,異種宿 主内での機能的発現が困難なもの,あるいは*in vitro* で はほとんど触媒機能を発揮しないものなども含まれる。 従って,これらの反応を迂回するための代替代謝経路の デザインが必要となった。

解糖系の最終産物であるピルビン酸をアセチル CoA へと変換する反応は、多くの生物においてピルビン酸デ ヒドロゲナーゼ複合体 (PDH) と呼ばれる酵素タンパ ク質複合体によって触媒される。しかし、PDH はそれ ぞれ 10~20 個ものサブユニットからなる 3 つの酵素で 構成される巨大な酵素複合体であり、その複雑な高次構

 図 3. キメラ型 EM 経路および TkME のカップリングによる *in vitro* でのグルコースからのリンゴ酸生産¹⁰。リンゴ酸, 乳酸,および NADP(H) 濃度をそれぞれ黒丸,灰色丸,黒 四角印で示した。

造ゆえに異種宿主内での機能的発現は困難と考えられ た。そこで筆者らは、耐熱性 PDH の異種発現を試みる のではなく、ピルビン酸デカルボキシラーゼによるピル ビン酸からアセトアルデヒドへの脱炭酸反応と CoA 付 加型アルデヒドデヒドロゲナーゼ (ADDH) によるア セトアルデヒドからアセチル CoA への酸化反応を組み 合わせた 2 ステップからなる迂回経路をデザインするこ とで PDH が触媒するものと同等の変換反応を行わせ た³。

また C. acetobutylicum の天然型経路において、ブタ ノール生産の中間体のひとつであるクロトニル CoA は, ブチリル CoA レダクターゼ (BCD) と呼ばれる酵素に より,分子内二重結合の飽和化を受ける(図4)。この 結果生じるブチリル CoA は, ADDH により NAD(P)H-依存的な還元を受けると同時に、ここから CoA が脱離 することで1-ブタノールの直接の前駆体であるブチル アルデヒドが生産される(上述のアセトアルデヒドから アセチル CoA への酸化の逆反応と同等である)。BCD による二重結合還元反応は、補酵素として NAD(P)H を 要求するが、この際、BCD は EtfA、EtfB と呼ばれる特 定のレドックスパートナータンパク質を介して NAD(P) Hから電子を受け取る。BCD, EtfA, EtfB はそれぞれ 独立したタンパク質として細胞質中に存在しているが, 細胞という微小な空間内にこれらがパッケージングされ た状態と比較し, in vitro の反応液中で自由拡散した状 態では、各タンパク質の実効濃度ははるかに薄くなり、 それらの相互作用、つまり電子授受のためのリレー反応 の頻度は著しく低下する。ここで筆者らは、クロトニル CoA からブチルアルデヒドに至る2段階反応の後半に あたる反応 (ブチリル $CoA \rightarrow$ ブチルアルデヒド+CoA) を触媒する ADDH の基質特異性に着目した。好熱菌 T. thermophilus 由来 ADDH の基質特異性を精査したとこ ろ、本酵素がブチリル CoA のほか、クロトニル CoA の還元的 CoA 脱離反応を触媒し、クロトンアルデヒド を生成することを見出した。さらにわれわれは, old

図4. クロトニル CoA からブチルアルデヒドへの変換のための人工経路デザイン³⁾。ブタノール発酵菌である C. acetobutyricum は, 白抜き矢印で示すように BCD および ADDH による二段階反応でクロトニル CoA を還元する。レドックスパートナータンパク 質を要求する BCD の使用を避けるため, ADDH によるクロトニル CoA の還元反応と NFO によるクロトンアルデヒドの C=C 二重結合飽和化反応をカップリングさせ, 天然経路と同様の変換反応を in vitro で実現した。

図5. In vitro での1-ブタノール生産のための人工代謝経路(A) およびこれを用いたグルコースからの1-ブタノール生産³。1-ブタノー ル濃度を黒丸, NAD⁺, NADH の総濃度を灰四角で示した。矢印は, 1 mM の NADH を追加添加した時点を示す。

yellow enzyme と総称されるフラビン含有酵素が, α,β-炭素間に二重結合を有するケト化合物の飽和化を触媒す るとの知見に基づき,同じく*T. thermophilus* に由来す る old yellow enzyme のひとつ(NADH-flavin oxidoreductase, NFO)を取得した。これをクロトニル CoA の還 元産物であるクロトンアルデヒドに作用させたところ, 期待どおりブチルアルデヒドの生成を確認することがで きた。すなわち,天然の経路では,(1)二重結合の飽和 化,(2)還元的 CoA 脱離の順で進むクロトニル CoA からブチルアルデヒドへの変換反応を,その反応ステッ プを逆転させた人工経路をデザインすることにより *in vitro* で実現させることができたわけである。

最終的に筆者らは、図5に示すように16種類の耐熱 性酵素からなる *in vitro* 合成代謝経路を構築した。本経 路を通じたグルコースから1-ブタノールへの変換反応 は、1-ブタノール生産速度 8.2 µmol/L/min, モル収率 82%で進行した³。現時点での最終生産物濃度は低く (3.2 mM) とどまっているものの、生産速度と収率に関 しては、代謝改変された大腸菌による発酵生産の場合⁷ に比肩するレベルを達成している。

5. おわりに

以上のとおり,筆者らは耐熱性酵素をモジュールとした in vitro での人工代謝経路構築とそれを用いた化学品 生産のためのモデル研究を展開してきた。一連の研究に より,所望の化学品を自在に作り分けるという初期コン セプトは実証されつつあると感じる反面,実際の産業応 用に向けての障壁となろう課題も明らかになってきた。 例えば,いずれのモデル実験でも共通して見出された課 題として,補酵素,特に酸化還元補酵素である NAD(H), NADP(H)の熱分解が挙げられる。触媒モ ジュールの簡便な調製のため,好熱菌由来酵素を利用す る本法の動作原理上,生産反応は50~70°C 程度の高い 温度で行う必要がある。天然型補酵素に比べ安定性の高 い合成アナログでこれらを代替するというアプローチも 提唱されている⁹が,一方でこの問題は,われわれに次 のような単純な問いを投げかけもする。「そもそも高温 で生育・生存する好熱菌は,いかにしてこれらの補酵素 を安定的に利用しているのであろうか?」その分子メカ ニズムの解明など, *in vitro* 代謝工学のフィージビリ ティーを向上させるためには,応用面のみでなく基礎的 観点からの研究の遂行もますます重要となると考えてい る。

文 献

- Guterl, J.K., D. Garbe, J. Carsten, F. Steffler, B. Sommer, S. Reiße, A. Philipp, M. Haack, B. Rühmann, A. Koltermann, U. Kettling, T. Brück, and V. Sieber. 2012. Cell-free metabolic engineering: Production of chemicals by minimized reaction cascades. ChemSusChem. 5: 2165–2172.
- Krutsakorn, B., K. Honda, X. Ye, T. Imagawa, X. Bei, K. Okano, and H. Ohtake. 2013. *In vitro* production of *n*-butanol from glucose. Metab. Eng. 20: 84–91.
- 3) Krutsakorn, B., T. Imagawa, K. Honda, K. Okano, and H. Ohtake. 2013. Construction of an *in vitro* bypassed pyruvate decarboxylation pathway using thermostable enzyme modules and its application to *N*-acetylglutamate production. Microbial. Cell Fact. 12: 91.
- Matsubara, K., Y. Yokooji, H. Atomi, and T. Imanaka. 2011. Biochemical and genetic characterization of the three metabolic routes in *Thermococcus kodakarensis* linking glyceraldehyde 3-phosphate and 3-phosphoglycerate. Mol. Microbiol. 81: 1300–1312.
- Myung, S., J. Rollin, C. You, F. Sun, S. Chandrayan, M.W.W. Adams, and Y.H.P. Zhang. 2014. *In vitro* metabolic engineering of hydrogen production at theoretical yield from sucrose. Metab. Eng. 24: 70–77.
- Rollin, J.A., T.K. Tam, and Y.H.P. Zhang. 2013. New biotechnology paradigm: cell-free biosystem for biomanufacturing. Green Chem. 15: 1708–1719.
- Shen, C.R., E.I. Lan, Y. Dekishima, A. Baez, K.M. Cho, and J.C. Liao. 2011. Driving forces enable high-titer anaerobic 1-butanol synthesis in *Escherichia coli*. Appl. Environ. Microbiol. 77:

2905-2915.

- Welch, P. and R.K. Scopes. 1985. Studies on cell-free metabolism: Ethanol production by a yeast glycolytic system reconstituted from purified enzymes. J. Biotechnol. 2: 257–273.
- Woodward, J., M. Orr, K. Cordaray, and E. Greenbaum. 2000. Enzymatic production of biohydrogen. Nature 405: 1014– 1015.
- Ye, X, K. Honda, Y. Morimoto, K. Okano, and H. Ohtake. 2013. Direct conversion of glucose to malate by synthetic metabolic engineering. J. Biotechnol. 164: 34–40.
- Ye, X., K. Honda, T. Sakai, K. Okano, T. Omas, R. Hirota, A. Kuroda, and H. Ohtake. 2012. Synthetic metabolic engineering-a novel, simple technology for designing a chimeric meta-

bolic pathway. Microb. Cell Fact. 11: 120.

- 12) Yokoyama, S., H. Hirota, T. Kigawa, T. Yabuki, M. Shirouzu, T. Terada, Y. Ito, Y. Matsuo, Y. Kuroda, Y. Nishimura, Y. Kyogoku, K. Miki, R. Masui, and S. Kuramitsu. 2000. Structural genomics projects in Japan. Nat. Struct. Biol. 7: 943–945.
- 13) You, C., H. Chen, S. Myung, N. Sathitsuksanoh, H. Ma, X.Z. Zhang, J. Li, and Y.H.P. Zhang. 2013. Enzymatic transformation of nonfood biomass to starch. Proc. Natl. Acad. Sci. USA 110: 7182–7187.
- 14) Zhu, Z., T.K. Tam, F. Sun, C. You, and Y.H.P. Zhang. 2014. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat. Commun. 5: 3026.