Cloning and Characterization of sigA and sigB Genes from Rhodococcus opacus Strain B4: Involvement of sigB in Organic Solvent Tolerance

AKIHISA KITA, NOBORU TAKIGUCHI and JUNICHI KATO*

Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan

* TEL: +81–(0)82–424–7757 FAX: +81–(0)82–424–7047
* E-mail: jun@hiroshima-u.ac.jp

(Received: 22 December, 2008/Accepted: 17 January, 2009)

We cloned and sequenced the sigA and sigB genes from organic solvent-tolerant Rhodococcus opacus strain B4. The predicted SigA and SigB proteins showed high similarity with the mycobacterial principal sigma factor, σA proteins, and the mycobacterial alternative sigma factor, σB proteins, respectively. The sigA gene was transcribed almost constitutively during growth and after environmental stress, while transcription of the sigB gene was induced during transition from exponential growth phase to stationary phase and after environmental stress including heat shock and ethanol stress. The sigB mutant of R. opacus strain B4 showed decreased growth at higher temperature and in the presence of ethanol. In addition, the sigB mutant increased susceptibility to benzene, toluene, and n-hexane, although it was as tolerant to other organic solvents as the parental strain. Our results indicate that SigB is involved in cell tolerance to specific organic solvents in R. opacus strain B4. It was found that SigB is required for expression of benzene dioxygenase operon. However, genetic analysis revealed that organic solvent degradation is not involved in organic solvent-tolerance even under the sigB deficient background.

Key words: solvent tolerance, Rhodococcus opacus, sigA, sigB, RpoD family

1. Introduction

It was 1989 when Inoue and Horikoshi first reported the presence of a bacterium which can thrive in high concentrations of toluene. Since then, several organic solvent-tolerant bacteria have been isolated. They include Pseudomonas putida strains, Bacillus spp., Flavobacterium strain DS-711, Arthrobacter ST-1, and Rhodococcus sp. strain 33 (reference 4, and see references cited in reference 35). We isolated Rhodococcus opacus strain B4 from gasoline-contaminated soil as a benzene-tolerant bacterium. This strain not only tolerates a wide variety of aliphatic and aromatic hydrocarbons but also utilizes them as a sole source of carbon and energy. It was demonstrated that this strain is able to survive and exhibit biocatalytic activity in anhydrous organic solvents for at least 5 days. Therefore, R. opacus strain B4 is expected to be a good candidate of a host strain for bioproduction of value added hydrophobic chemicals.

The mechanisms underlying bacterial tolerance to organic solvents have been investigated intensively with Gram-negative bacteria P. putida and Escherichia coli. They include modifications in cell envelope to increase cell membrane rigidity and decrease permeability, solvent-inactivating enzymes, active efflux of solvents by solvent efflux pumps, and release of membrane vehicles with solvent molecules adhering to cells. However, little is known about solvent-tolerant mechanisms in Gram-positive bacteria. Although Iwabuchi et al. reported involvement of extracellular polysaccharide in organic solvent-tolerance in Rhodococcus rhodochrous, it is unclear even whether Gram-positive bacteria possess solvent-tolerant mechanisms similar to those of Gram-negative bacteria. Sardessai and Bhosle paid attention to sigma B in Bacillus subtilis as a factor involved in solvent tolerance because this secondary sigma factor is induced by environmental stress including ethanol shock and involved in bacterial survival after exposure to ethanol. They also pointed out that SigB had been shown to regulate expression of bmrUR operon encoding proteins that may contribute to resistance to multidrug compounds. However, this speculation has not yet been verified experimentally.

Rhodococcus, together with Mycobacterium, Corynebacterium, Nocardia, and Gordonia, belongs to the mycobacteria, a broad and diverse group of mycolic-acid-containing actinomycetes. In Mycobacterium tuberculosis, Corynebacterium glutamicum, and Brevibacrerium flavum, two family proteins, σA and σB, have been identified and characterized. The mycobacterial σB protein is a principal and essential sigma factor, while mycobacterial σA is an alternative sigma factor and plays roles similar to those of B. subtilis sigma B. Transcription of the σB gene is in-
duced upon entry into the stationary phase and by environmental stress\(^7,11\), and involved in cell responses to environmental stress including ethanol stress\(^8\). In this paper, we cloned and characterized genes encoding \(\sigma^A\) and \(\sigma^B\) from \textit{R. opacus} strain B4. We also constructed the \textit{sigB} mutant of \textit{R. opacus} strain B4 and examined it for its responses to organic solvents to investigate the role of SigB in solvent tolerance in \textit{R. opacus} strain B4.

2. Materials and Methods

2.1. Bacterial strains and growth conditions

\textit{Rhodococcus opacus} strain B4\(^24\) and its derivatives were used in this study. \textit{R. opacus} strains were grown at 28°C with shaking in MSB medium\(^25\) with 0.5% glucose and tryptic soy broth (TSB; Difco Laboratory, Detroit, MI, USA). For solid media, 2% agar was added. Whenever necessary, media were supplemented with 5 mg/l of gentamycin, 25 mg/l of chloramphenicol, and 20% sucrose. \textit{E. coli} MV1184\(^38\), which was used for plasmid construction and DNA manipulation, was grown at 37°C with shaking in 2x YT medium\(^32\) supplemented with appropriate antibiotics.

2.2. DNA manipulation and sequencing

Standard procedures were used for plasmid DNA preparations, restriction enzyme digestions, ligations, transformations, agarose gel electrophoresis, and Southern hybridization\(^25\). Polymerase chain reactions (PCRs) were carried out using KOD plus DNA polymerase (Toyobo, Tokyo, Japan) according to the manufacturer’s instructions. Oligonucleotides used for PCR are listed in Table 1. Before cloning, PCR products were electrophoresed and purified from the 1% agarose gel using the GeneCleanII kit (Bio101, Carlsbad, CA, USA). \textit{R. opacus} was transformed by electroporation as described previously\(^25\). The nucleotide sequence was determined by the dideoxynucleotide sequencing method\(^34\). Nucleotide sequence similarities were determined using BLAST (National Center for Biotechnology Information databases).

2.3. Cloning and sequencing of the \textit{sigA} and \textit{sigB} genes from \textit{R. opacus} strain B4

The genome sequence of \textit{Rhodococcus} sp. strain RHA1, which is closely related to \textit{R. opacus} strain B4, has been completely sequenced\(^21\). We designed PCR primer sets B4sigAf/B4sigAr and B4sigBf/B4sigBr (Table 1) based on nucleotide sequences of the \textit{sigA} and \textit{sigB} genes from \textit{Rhodococcus} sp. strain RHA1 (accession number NC008268, locus tags RHA1 ro06823 [\textit{sigA}] and RHA1 ro06813 [\textit{sigB}]). The \textit{sigA} and \textit{sigB} genes were amplified from the \textit{R. opacus} strain B4 genome by PCR using these primer sets and the resulting RCR products were cloned into the \textit{Sma}I site of pBluescript II KS+ (Stratagene, TX, USA). Then, the \textit{R. opacus} strain B4 genome was analyzed by Southern hybridization with the cloned \textit{R. opacus} strain B4 \textit{sigA} and \textit{sigB} sequences as probes. The \textit{sigA} probe

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers for PCR</td>
<td></td>
</tr>
<tr>
<td>B4sigAf</td>
<td>GTGGCAGCCACCGATACACGTCAGA</td>
</tr>
<tr>
<td>B4sigAr</td>
<td>GCAGGTTGCTGCGCACTACCTGGAC</td>
</tr>
<tr>
<td>B4sigBf</td>
<td>ATGACAAGCCCCAGCACACTAICTC</td>
</tr>
<tr>
<td>B4sigBr</td>
<td>CGAGCCTGGCTCGCTTACGCAGC</td>
</tr>
<tr>
<td>sigB1f</td>
<td>GGAAGCTTACCGGTGGGTGCTCTCCACCTCGA</td>
</tr>
<tr>
<td>sigB1r</td>
<td>GGAATCTGACCTGCCTCCTGAGGTCGTC</td>
</tr>
<tr>
<td>sigB2f</td>
<td>GGAGATCTTCTCCCTCCCGACCATGCCGCGG</td>
</tr>
<tr>
<td>sigB2r</td>
<td>GGCTAGATGTCGACTGGCGTGGCCTGTC</td>
</tr>
<tr>
<td>sigB3f</td>
<td>AACTGATCGAATCTCGCGTCGTCGCC</td>
</tr>
<tr>
<td>sigB3r</td>
<td>CGCGAGGAGTGCGCGTTCAGCGATT</td>
</tr>
<tr>
<td>Primers for qRT-PCR</td>
<td></td>
</tr>
<tr>
<td>(For measurement of \textit{sigA} mRNA)</td>
<td></td>
</tr>
<tr>
<td>sigA-RT-F</td>
<td>GACATGAGCAGACATCGAC</td>
</tr>
<tr>
<td>sigA-RT-R</td>
<td>CTTGTCCCTCCGAC</td>
</tr>
<tr>
<td>(For measurement of \textit{sigB} mRNA)</td>
<td></td>
</tr>
<tr>
<td>sigB-RT-F</td>
<td>CACCCACTACTCGATCG</td>
</tr>
<tr>
<td>sigB-RT-R</td>
<td>ACAGTCCACCTCGTGT</td>
</tr>
<tr>
<td>(For measurement of \textit{bnzA1} mRNA)</td>
<td></td>
</tr>
<tr>
<td>bnzA1-RT-F</td>
<td>TGTACGAACAGGGAGGACTGGAG</td>
</tr>
<tr>
<td>bnzA1-RT-R</td>
<td>ATCTCAGGCATGGTAGTT</td>
</tr>
<tr>
<td>(For measurement of \textit{gyrB} mRNA)</td>
<td></td>
</tr>
<tr>
<td>gyrB-RT-F</td>
<td>GTCTACAGCTCGAGAC</td>
</tr>
<tr>
<td>gyrB-RT-R</td>
<td>TGACGACTCCTCGGT</td>
</tr>
</tbody>
</table>
detected 1.1-kb and 0.6-kb BamHI genomic fragments, while the sigB probe detected a 4.7-kb genomic fragment. These BamHI and NotI fragments were cloned into pBlue-script II KS+. The PCR products and cloned BamHI and NotI fragments were sequenced to determine nucleotide sequences of the sigA and sigB genes in R. opacus strain B4.

2.4. Plasmid construction

PCR using primer sets sigB1f/sigB1r and sigB2f/sigB2r (Table 1) was conducted to amplify 1.3-kb regions upstream and downstream of sigB from the R. opacus strain B4 genome, respectively. Amplified upstream and downstream regions were digested with HindIII-BgII and BgII-XbaI, respectively, and ligated with the backbone of HindIII-XbaI-digested pG19II KS+ to obtain pG19-dsigB. Plasmid pG19-Pkm-bnz(37) was used to exchange a promoter region of the bnz operon in R. opacus strain B4 with a promoter of kanamycin resistant (Km(37)) gene from pUC4K(37). The multi-cloning site from pBluescript II KS+ (Stratagene, Cedar Creek, TX, USA) was introduced into Rhodococcus-E. coli shuttle vector pKNR01.1(37) to obtain pKNR10.1. The sigB gene was amplified from R. opacus strain B4 genome by PCR using a primer set sigB3f/sigB3r and the PCR product was cloned into pKNR10.1 to construct pKNR-sigB.

2.5. Unmarked genomic gene modification

Plasmid pG19II(37) was used for the unmarked gene modification in R. opacus strain B4. pG19II was originally constructed for the insertion-deletion mutation of chromosomal genes in Pseudomonas aeruginosa. This plasmid contains gentamycin resistant (Gm(37)) gene as a selectable marker, sacB (confering sucrose sensitive phenotype) as a counter-selectable marker, the multi-cloning sites, an E. coli replication origin, and an origin of transfer. To delete a genomic gene, a derivative of pG19II was constructed by cloning upstream and downstream regions of the target gene into pG19II. Strain B4 was transformed with the pG19II derivative and Gm(37) transformant cells were obtained. The Gm(37) transformants were grown in TSB without gentamycin to allow the second homologous chromosomal recombination. After cultivation for 6 h, culture broth was spread on TSB agar plates containing 20% sucrose and the plates were incubated at 28°C to select sucrose resistant colonies. Theoretically, half of the sucrose resistant colonies were unmarked deletion mutants and the other half has a parental genotype. Unmarked gene modification in derivatives from R. opacus strain B4 was confirmed by PCR analysis.

2.6. Organic solvent-sensitive growth assays

R. opacus strains were cultivated with shaking in TSB. Overnight cultures were diluted with TSB and adjusted to optical density at 600 nm (OD600)=0.1. To assay sensitivity to organic solvents, 5 µl of 10-fold serial dilutions of the diluted cultures were spotted onto TSB agar plates. The plates were incubated at 28°C in a desiccator with a beaker containing each of liquid organic solvents. Colony growth was inspected after 72 h of incubation.

2.7. Quantitative reverse transcription PCR (qRT-PCR)

R. opacus strains were cultivated in TSB in the absence and presence of toluene in the vapor phase. Cells were harvested by centrifugation at 4°C for 10 min. Total RNA was extracted from R. opacus cells using an RNeasy kit (QIAGEN, Inc., Valencia, CA) with a RNaprotect bacteria reagent (QIAGEN) for the stabilization of RNA. RNA samples were treated with an RNase-free DNase set (QIAGEN) to eliminate contaminating DNA. Complete removal of DNA was confirmed by PCR. A One Step SYBR PrimeScript RT-PCR kit (Takara Bio, Inc., Shiga, Japan) was used for cDNA generation and qRT-PCR. qRT-PCR was carried out using a LightCycler system (Roche Diagnostics) with an reverse transcription at 42°C for 15 s followed by cycles of denaturation at 95°C for 5 s, primer annealing at 60°C for 10 s, and extension at 72°C for 6 s. Primer sets used in qRT-PCR were listed in Table 1. The gyrB mRNA was also measured as the standard using primer set gyrB-RT-F/gyrB-RT-R and used for normalization.

2.8. Nucleotide sequence accession numbers

The DDBJ accession numbers of the sigA and sigB genes of B-4 are AB477528, and AB477529, respectively.

3. Results and Discussion

3.1. Cloning and sequence analysis of sigA and sigB from R. opacus strain B4

The sigA and sigB genes from R. opacus strain B4 were cloned and sequenced as described in “Materials and Methods” section. Sequence analysis revealed that the sigA gene of 1371 bp and the sigB gene of 969 bp could code for proteins of 457 and 323 amino acid residues having calculated molecular weights of 50.0 and 36.0 kDa, respectively. Blastp analysis indicated that R. opacus strain B4 SigA shows a high similarity to mycobacterial principal sigma factors (σ70 family group 1), σ70 proteins. In the σ70 family proteins, regions 1.2, 2, 3, and 4 are conserved(39), and in these regions, R. opacus strain B4 SigA shares 88–97% identical amino acid residues with Mycobacterium tuberculosis H37Rv MysA (NP 212719). Mycobacterium smegmatis strain MC2 155 SigA (YP 887090), and Corynebacterium glutamicum ATCC 13032 SigA (NP 601117). Especially in the highly conserved regions (RpoD box in region 2.3, 14-mer sequence in region 2.4, and 20-mer sequence in region 4.2(39)), R. opacus strain B4 SigA shows a perfect match with M. tuberculosis H37Rv MysA. In contrast, there is much lower similarity among these sigma factors in region 1.1 which is poorly conserved in the principal sigma factors although R. opacus strain B4 SigA is almost identical to Rhodococcus sp. strain RHA1 SigA in this region. The conserved regions (regions 1.2, 2, 3, and 4) were also found in R. opacus strain B4 SigB. However, this
protein lacks region 1.1. Moreover, R. opacus strain B4 SigB has higher similarity (79–88% identity) to mycobacterial σ^b proteins (M. tuberculosis H37Rv MysB [NP 217226], C. glutamicum ATCC 13032 SigB [NP 601125], and M. smegmatis strain MC2 155 SigB [YP 887083]) than to σ^a proteins. These results suggest that R. opacus strain B4 SigB belongs to the mycobacterial σ^b.

3.2. Transcriptional analysis of sigA and sigB

Mycobacterial σ^a proteins are principal and essential sigma factors and responsible for most RNA synthesis in exponentially growing cells. The σ^a genes are transcribed almost constitutively during growth and after stress conditions. Mycobacterial σ^b proteins are dispensable alternative sigma factors and thought to play roles similar to those of E. coli RpoS. Transcription of the σ^b genes is induced during transition from exponential growth phase to stationary phase and after several stress conditions such as acid stress, ethanol shock, heat shock, and H$_2$O$_2$ exposure. To confirm that R. opacus strain B4 SigA and SigB belong to mycobacterial σ^a and σ^b, respectively, transcriptional analysis was conducted for sigA and sigB by qRT-PCR.

Fig. 1 shows time course data of sigA and sigB transcription when R. opacus strain B4 was cultivated in TSB with shaking at 28°C. The level of transcription of sigA was almost constant during different growth phase, suggesting that sigA is constitutively transcribed. Transcription pattern of sigB is similar to those of other mycobacterial σ^a genes and the level of sigB transcription increased during the transition from exponential to stationary growth phase. We then investigated effects of environmental stress on transcription of sigA and sigB. R. opacus strain B4 cells at the late exponential growth phase were subjected to heat shock (33°C) and ethanol stress (3% ethanol) and transcription levels of sigA and sigB in cells were measured. As controls, transcription levels of sigA and sigB were measured in cells which were not exposed to the environmental stress. Heat shock and ethanol stress induced the transcription of the sigB mRNA (Fig. 2). Compared with controls, 1.7-fold and 4.8-fold induction of the sigB mRNA was observed after exposure to heat shock and ethanol stress, respectively. In contrast, transcription of sigA was not affected by heat shock and ethanol stress. There was no significant difference in transcriptional level of the sigA gene between control cells and stressed cells. Thus, it was shown that transcriptional responses of R. opacus strain B4 sigA and sigB to growth rate and environmental stress are similar to those of mycobacterial σ^a and σ^b genes, respectively.

3.3. Construction of unmarked sigB deletion mutant of R. opacus strain B4

We further characterized R. opacus strain B4 SigB. To investigate the role of SigB in R. opacus strain B4 cells, an unmarked sigB deletion mutant of R. opacus strain B4, designated R. opacus strain dsigB, was constructed using pG19-dsigB as described in “Materials and Methods” section. Deletion mutation of the genomic sigB gene was confirmed by PCR analysis (data not shown). Strain dsigB showed normal growth when it was cultivated under normal conditions (in MSB medium with glucose at 28°C with shaking) (Fig. 3A). To investigate the influence of sigB deletion on responses to environmental stress, we examined strain dsigB for its growth under different environmental stress. Strain
dsigB showed growth similar to that of the parental strain under acidic conditions (pH=5.0 and 6.0) (Fig. 3B). In contrast, the sigB mutation affected growth at higher temperature (33°C) and in the presence of ethanol. As shown in Fig. 3C and D, strain dsigB showed significantly decreased growth compared to the parental strain when they were grown in MSB with glucose under higher temperature (33°C) or in the presence of 3–4% ethanol. Simultaneous exposure of cells to higher temperature and ethanol stress severely affected growth of strain dsigB. Strain dsigB failed to grow at 33°C in the presence of 3% ethanol, while the parental strain showed decreased but significant growth (Fig. 3E). These results together with transcriptional responses of sigB to environmental stress indicate that SigB is involved in the regulation of the gene expression in response to environmental stress.

3.4. The sigB gene is involved in tolerance to specific organic solvents

In this study, it was demonstrated that SigB plays a role in a response to ethanol stress in R. opacus strain B4. Therefore, we then conducted organic solvent-sensitive growth assays to assess involvement of sigB in tolerance to organic solvents in R. opacus strain B4. Organic solvents tested were aliphatic hydrocarbons (n-hexane, n-octane, and n-decane) and aromatic compounds (benzene, toluene, o-, m-, p-xylene, ethylbenzene, o-, m-, p-cresols, dimethylphthalate, and diethylphthalate). The sigB mutant showed increased susceptibility to benzene, toluene, and n-hexane, but not to other organic solvents (Fig. 4). Introduction of pKNR-sigB containing the functional sigB gene complemented the mutant phenotype of strain dsigB, confirming that increased susceptibility of strain dsigB to benzene, toluene, and n-hexane was due to the sigB mutation (Fig. 4). It is the first demonstration that SigB is involved in bacterial tolerance to hydrocarbons.

It was found that SigB is involved in tolerance to specific organic solvents (i.e. benzene, toluene, and n-hexane) in R. opacus strain B4. How can this specificity be explained? We paid attention to inactivating (degrading) activities of organic solvents for this explanation because both benzene and toluene are metabolized via the common pathway, benzene dioxygenase pathway24). In the previous study, we demonstrated that organic solvent-tolerance was not affected by inactivation of benzene dioxygenase (bnz) operon in R. opacus strain B424). However, we speculated that inactivation (degradation) of organic solvents are required for organic solvent-tolerance in the sigB-deficient background, where expression of some other functions required for organic solvent-tolerance might be also defective, and that SigB regulates expression of bnz operon. To assess this possibility, we measured transcription level of bnzA1 encoding the benzene dioxygenase large subunit in cells grown on TSB agar plates supplemented with toluene in the vapor
phase. When grown on TSB plates, toluene induced transcription of the *bnzA1* gene in the parental strain (Fig. 5). However, transcription of *bnzA1* was not induced in the *sigB* mutant even in the presence of toluene. Introduction of pKNR-sigB restored inducible transcription of *bnzA1* in the *sigB* mutant. These results clearly demonstrate that SigB is required for inducible transcription of *bnz* operon.

To assess whether susceptibility to toluene in strain *dsigB* is caused by failure of the degradation pathway, i.e. *bnz* operon, we inserted Km gene promoter form pUC4K in the upstream region of *bnz* operon for forced expression of *bnz* operon in strain *dsigB*. The resulting strain was designated *dsigB(Pk-bnz)*. Although expression of *bnz* operon in *dsigB(Pk-bnz)* was confirmed by qRT-PCR (data not shown), it did not restore the ability of *sigB* mutant to tolerate toluene (Fig. 6). Rather, strain *dsigB(Pk-bnz)* seemed more sensitive to toluene than strain *dsigB*. It may be because a metabolite(s) of toluene exerts a toxic effect on strain *dsigB(Pk-bnz)* cells. Considering these results and our previous result that solvent-tolerance is not affected by deletion of *bnz* operon,

P. putida DOT-T1E is a Gram negative bacterium highly tolerant to organic solvents, and the mechanisms of solvent tolerance have been most extensively studied in this strain. In *P. putida DOT-T1E*, three efflux pumps belonging to the Resistance-Nodulation-Cell-Division (RND) family of bacterial transporters (TtgABC, TtgEFG, and TtgGHI) are responsible for its solvent tolerance as well as drug resistance. It was found that these efflux pumps exhibit significant differences in substrate specificity. Although there has been no report demonstrating involvement of efflux pumps in organic solvent tolerance of Gram positive bacteria, sequence analysis predicts the presence of many multidrug
resistant transporters in their genomes. For example, *Rhodococcus* strain RHA1, which is closely related to *R. opacus* strain B4, is predicted to possess more than 40 putative major facilitator superfamily multidrug resistance protein genes and more than 10 putative multidrug ABC transporter genes in its genome (NC 008268). Based on these data, we speculate that *R. opacus* strain B4 also possesses many genes encoding efflux pump in its genome and that some of them are responsible for organic solvent tolerance. And we hypothesize that one of efflux pump is specific for toluene, benzene, and *n*-hexane, which is required for tolerance to these organic solvents, and that its expression is regulated by SigB. We are now searching candidates for efflux pump genes involved in solvent-tolerance in *R. opacus* strain B4 by utilizing the genome sequence data of *Rhodococcus* sp. strain RHA1.

Acknowledgements

This work was carried out as part of the Project for Development of Basic Technologies for Advanced Production Methods Using Microorganism Functions on R&D of New Industrial Science and Technology Frontier by the Ministry of Economy, Trade, and Industry (METI), which was entrusted by New Energy and Industrial Technology Development Organization (NEDO).

References

